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Abstract: - Complex structure {F} is almost complex manifolds is shown. It has been defined and studied by Schouten and
Dontzing (1930) introduced the concept of complex structure and a Hermitian metric in a differentiable manifold

and called it a complex manifold In this article we discuss the, Almost complex structure {F} is not unique and also
discuss that the complex structure {F} has 2m Eigen values. An almost complex manifold is that it contain a tangent

bundle 7, of dim m and a tangent bundle 77, conjugate to 7, such that 7, (7., =¢ and they span together a tangent
bundle of dim 2m.
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Introduction: - LetV,, n=2m be an even dimensional differentiable manifold of differentiability class C" and let there
exists a vector valued real linear function F of differentiability class C r onV, , satisfying
F?’+1,=0 < X+X=0. XeT,

For arbitrary vector field X, where X = FX .
Then V, is said to be an almost complex manifold and {F }is said to give an almost complex structure onV,,.

Example.1: Let us considerV, , on which F given by,

0O 0 10
Bt 01
F=
-1 0 0O
0 -10 0,
Therefore,
-1 0 0 O
F2 0O -1 0 O
O 0 -1 0
o 0 0 -1,
ie. F?+1,=0.

Example.2: Letm = R?, considered as a manifold with local coordinate the ordinary Cartesian coordinates (X, y). For each

p € M the endomorphism of M b given by,

J :a(gj +b(£j ——>—b[£} +a(£j

P lox ), ), ), ),
Let X :atij +b[£}
ox ), ),
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J§X:—a[£j —b(gj =-X
OX o oy )

(9z+1)x =0
Since X is arbitrary vector field, therefore we have
(92+1)=o0.

Theorem: Therank(F) =n.

Proof: Let X =0=> X =0=> X =0
Hence X =0 has only trivial solution X = 0, consequently rank(F) =n.

Theorem:- Almost complex structure {F} is not unique.

Proof:- Let us define
(1) HF = Fpu
Where w4 is anon-singular tensor of type (1, 1) and {F} is an almost complex structure,
Post multiplying (1) by F , we get
(uF'JF = (Fu)F
1F? = F(uF )= F(Fu)= Fu=—u
Therefore F?2+1,=0 since u#0

i.e. {F } is an almost complex structure.

Nijenhuis Tensor: Nijenhuis with respect to F is a vector valued bilinear function N, given by

N(X,Y)=[F, FIXY) = [,V ]+ DY = [KoY = [X V).
In an almost complex manifold,

N(X,Y)=[F, FIXY) 2 [X Y ]-[X Y = [KoY =[x,V ]

Theorem: On an almost complex manifold, we have
M N(X,Y)=—=N(X,Y)=-N(X,Y)=-N(X,Y)

) NXY)==N(XY)=N(X.Y)=N(X.7)

Proof: Proof is obvious.

Definition: An almost complex manifold with vanishing Nijenhuis tensor is a complex manifold.

Definition: On an almost complex manifoldV,,, a bilinear function A is said to be
Pure if A(X,Y)+ A()?,Y_): 0
Hybrid if A(X,Y )= A(X,Y).

Theorem: F has m Eigen values + 1 and m Eigen values—1i .

Proof: Let A be an Eigen values of F and let P be the corresponding eigen vector. Then

FP = AP
i.e. P=AP.
Barring P we get,
P =A%P
i.e. A=-1 (SinceP #0)
Therefore A =i
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Thus +1 and — 1 are the Eigen values of F. Sincen = 2m, show + i repeated m times, — i repeated m times.

Theorem: Let {F} and {F} be two almost complex structures of the almost complex manifold V, connected by F = Fp

then, if P is an Eigen vector of F', P is an Eigen vector of F corresponding to some Eigen value.

Proof: Let P be an Eigen vector of F corresponding to the Eigen values 4 ,
Then FP=AP= uFP=AuP

Since UF =Fu, weget FuP = AuP

Hence P is Eigen vector of F corresponding to Eigen values A .

Theorem: The necessary and sufficient condition that V,, be an almost complex manifold is that it contain a tangent bundle 7,
of dim m and a tangent bundle ﬁm conjugate to 77, such that 7z, ﬂffm = ¢ and they span together a tangent bundle of dim 2m.

Projections on 7, and ﬁm being L and M given by
def def

2L=1_—iF, 2M =1_+iF

Proof: (Necessary) Let V, be an almost complex manifold with almost complex structure {F} whose Eigen values are + 1 and

—i. Let P,x=12,....,m are Eigen vectors corresponding to Eigen value +1i and Q,Xx=1, 2,.....m are m linearly
X

X

independent Eigen vectors conjugate to P corresponding to the Eigen values— I . Then,
X
X X
aP=0=a=0 VX
X
X X
and bQ=0=b=0 VX
X

Nowlet cP+dQ =0

Then él3+a§=0 (D)
Since FP=iP, FQ=-iQ

Then I éP—aQ}:O

10 {éP—éQ}zo (2

i.e. c=0andd=0
since P =0and Q =0 are linearly independent.

X X
Q=0=>¢c=0,d=0 v
X

X
Thus C E)"‘

is a linearly independent set.

[ O =<

Therefore {P,
X

X
Further, we have

LP=P LQ=0

X
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X

Because 2LP:(I —iF)P:P_iF P=P+P=2P,

n
and similarly.
Thus we have proved that there is a tangent bundle 7z, of dim m and there is a complex conjugate tangent bundle 7}'m of

dim m such that 7, ﬂ;fm = ¢ and they span to gather a tangent bundle of dim 2m. Projection on 7, and ﬁm being L and M.
Conversely: Suppose that there is a tangent bundle 7z, of dim m and a tangent bundle 7?m complex conjugate to 77, such that

T, ﬂ;fm =¢ and the span together linear manifold of dim 2m, Let P and Q (complex conjugate to P ) be m linearly
X X X

independent vector in 7, and 77m respectively. Let {P,Q} span a linear manifold of dim 2m, therefore {P,Q} is a linearly
Xy X x
X X
independent set. Let {p,q} be the inverse set of{P,Q} . Then
X x

I, =p®P+q®Q

This equation yields,

o(e)-4-4(9)
o)

def X X
F= i{p@ P—q®Q}

Let us define,

X X X X
F’=FF = iz{p@) P—q®QHp® P—q®Q}
X X X X
After solving, we get
F?+ I,=0
Thus the manifold admits an almost complex structure.

Corollary: Prove that
Q) *’=L, M?=M, LM=ML=0
(i) FL=LF =iL, FM =MF =—-iM

Corollary: Prove that, L= p® P and M =q®Q.

X X
Proof: Since {p,q} is inverse set of {P,Q} , We have
X x

I, =p®P+q®Q (D)
and we also know,

2L=1,-iF, 2M =1_+iF
Therefore L+M=1, .2
Operating (2) by F and using (1), we get

FL+FM = p® F P+ q®F Q
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KL—M)=E®G§%6®Q4QJ

10, L-M=p®P+q®Q ..(3)
From (2) and (3), we get the result.

Contravariant and covariant almost analytic vectors

Definition: A vector field V is said to e contravariant almost analytic if it satisfies

L,F=0

i.e. Lie derivatives of F with respect to V vanishes. A vector field V is said to be strictly contravariant almost analytic, if both V
and V are contravariant almost analytic i.e.

L,F =0 AndL,F =0.

Lemma: We have on an almost complex manifold,

i) L,F =L F+N(V,X)

Equivalent to,

(i) L,F +L,F =N{V,X)
(i) (L, F)XX)=(L, F)X)+N(v,X)
i) (L, F)X)+(L,F)YX)=N{,X)
Proof: Consider,
X~ (LX) L X)
or V. X]=(L,F)x)+M,X] (D)

Further taking Lie derivative of X with respect to V, we get
L, X = (L, FXX)+F(L, X)
or MV, X]=LF)YX)-V, X] o)

From (1) and (2), we have

ﬂVFXX —GJEXiijﬁ/x) E)
Where B/X] VX mm

Barring equation (3) We get

(L F)X)+ (L, FYXX)=N{V, X) )

From (3) and (4) we get results.

Theorem: A necessary and sufficient condition that vector field V on and almost complex manifold be contravariant almost

analytic is
L X =LX=N,X]=]MX]

Proof: A vector field V is contravariant almost analytic if

L,F=0 (D)
L, X =(LFYX)+L X

Using (1) in above equation, we get
L, X=L,X.

Theorem: Lie derivative of Nijenhuis tensor with respect to a contravariant almost analytic vector V, on an almost complex
manifold vanishes, i.e.

L,N =0.
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Definition: A 1-from ¢ is said to be covariant almost analytic if it satisfies,
o(((D4F)Y)- (B, F)X)= (Dgo)¥)- (Dx@)¥)

Where D is a symmetric connection inVn .

Theorem: If a 1-from @ is covariant almost analytic then de is pure in both the slots, i.e.
(do)X,Y)+(dw)X,Y)=0

Proof: Since,

(dw)X,Y)=(Dyo)Y)-(D,0)X) (1)

Using definition,

o((DxFXY)~(D,FXX))= (D40)¥)-(Dx0)Y) ..

o((D, FXX)~ (D FYY))= (D,0)X) - (D,0)X) ..)
Adding (2) and (3) then barring Y, we get the result.

and

def

Cor.: If @(X)= a)()?)<:> &3()?): ~o(X)
Then da(X,Y)=dw(X,Y)
Equivalent to dE)()?,Y)+ dco(X,Y)zO.

Proof: We have from definition,

a(Y)= a)(Y_)
Taking covariant derivative with respect to X, we get

(D,@)Y)=(D a))(Y)+a) D, F)Y)) ~ {0
since @ is covariant almost analytlc we have

o((D,F)Y)= (D, FXX))= (D 0¥ )~ (D, )Y) )
From (1), we have

(D,@)X)=(D,w)X)+ (D, FYX)) .03
From (1) and (3), we have

(Dy@)Y)-(D,@)X)=(Dy )Y )-(Dy @)X )+ o((Dy F XY))- (D, FXX))

Using (2) in (4), we get 3
(D))~ (B,@)X)= (D, 0)¥) - (D,w)X) e
Since,
(do)X,Y)=(Dy@)Y)-(D,0)X) ...(6)

From (5) and (6) we get the result.

Theroem: If 1-from e is covariant almost analytic on an almost complex manifold then @ is also covariant analytic.
def

Where @(X ) = a)()?) = cT)()?) =—o(X)

Proof: Since 1-from @ is covariant almost analytlc then we have

o((D, F)Y)-(D, F)(X) (D o)Y)-(Dyo)Y) ()
Taking covariant derivative of E)(Y) a)(Y) with respect to X and X, we get

(Dy@)Y)=(Dy@)Y )+ (D, F)Y)) .2)
and (D, @)Y)= Dxa)XY)+a) (D FXY)) .0)

Barring Y in (2)
(Dy@)Y )=—~(Dy)Y)+a((DyF )Y )) )

Now consider
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F(Y)=-v
Taking its covariant derivative with respect to X, we get
(D F)Y)=-F((D,F)Y)) (5

Operating by @, we get

w((Dx F)(Y_)) = _é((Dx F)(X )) -..(6)

Putting (6) in (4), we get

(Dy@)Y )=—~(Dy)Y)-a((D F)Y)) (D)

Now using (3) and (7), we get
(D@)Y)~(Dx@)¥)= (Do )V )+ Dy )Y )+ (D FXY))
+a)((D)?F)(Y )+ a((Dy FXY))

...(8)
Interchanging X and Y in (1), then barring X, we get

~a((D, F)X)=(D, )7 )+ (D o\Y)+o(D,FYY) .9
Using (9) in (8), we get the result.

Theorem: If on an almost complex manifold, the covariant almost analytic vector field @ is closed then @ is also closed.
def

Where (X )= a)()?) = 65()?)= ~o(X)
Proof: We have
da(X,Y)=dw(X,Y)
or da(X,Y)=—-dw(X,Y)
If @ is closed, then dow =0 = (dE))()?,Y): 0=dw=0.

Theorem: If @ and @ are hoth closed on an almost complex manifold then they are both covariant almost analytic, where
def

5(X) 2 0(X) = 3(X) = —o(X)

Proof: If @ and @ are both closed then
do(X,Y)=(D,)Y)—-(D,0)X)=0 (1)
and da(X,Y)=(D,@)Y)-(D,@)X)=0 NG))

Now consider,
a(Y)=o(7)
Taking its covariant derivative with respect to X, we get

(Dy@)Y)=(Dya )Y )+ a((DyF)Y)) .0
Interchanging X and Y, we get
(D,@)X )= (D,w)X)+ (D, FYX)) )

From (3) and (4), we have

(D,@)Y)-(D,&)X)= (D oY )-(D,0)X)+a((Dy F)Y))- (D, FXX))
o (Dy@)X)- (D))= ol
)-

(D FXY)- (D, FXX))
(DoY)~ (Dc@)Y) - (Dx@)Y)+ (D, @)X ) = @((D; FXY )~ (D, FYX))
Using (1), we get

(D))~ (Dx@)¥)= (D F)Y)~ (D, FXX))
Hence 1-from @ is covariant almost analytlc

We know that if 1-from @ is covariant almost analytic then @ is also covariant almost analytic.
F-Connection

Now

Def.: An affine connection D on an almost complex manifold is called an F-connection if,
(D4F)Y)=0< D,Y =D,Y
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In an almost complex manifold, we have
DXV +D,Y =0.
Theorem: Given an arbitrary connection B, connection D is defined by,
def —
2D,Y =B,Y -B,Y .
Then show that D is an F-connection.
Proof: We have,

2D,Y =B,Y - B,Y (D)
Barring Y in (1), we get

2D,Y =B,Y +B,Y .2)
Barring whole equation (1), we get

2D,Y =B,Y + BXY_ ...(3)

From (2) and (3), we get the result.
Theorem: On an almost complex manifold if the F-connection D is symmetric then Nijenhuis tensor vanishes.

Proof: Nijenhuis tensor on an almost complex manifold is defined as

NOXGY) = FIOON =RV ][0 Y)- [V - [ 7]

When connection D is symmetric F-connection,

(i) Torson tensor S =0,
(ii) D,F=0
Where

def
s(X,Y)=D,Y -D,X —[X,Y]
Since =0
Therefore D,Y —-D, X =[X,Y]

N(X,Y)=D,Y —-D, X —D,Y + D, X =D,Y + D, X - D,Y + D, X

Y

(D

Since D is an F-connection,
D,F=0=D,Y =D,Y. (2
Using (2) in (1), we get the result.
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